题目内容
1.在($\sqrt{x}$-1)4的展开式中,x的系数为( )A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 在二项展开式的通项公式中,令x的幂指数等于01,求出r的值,即可求得x的系数.
解答 解:在($\sqrt{x}$-1)4的展开式中,通项公式为Tr+1=${C}_{4}^{r}$•(-1)r•${x}^{\frac{4-r}{2}}$,令$\frac{4-r}{2}$=1,求得r=2,
可得x的系数为${C}_{4}^{2}$=6,
故选:C.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
练习册系列答案
相关题目
10.假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:
若已知y对x呈线性相关关系.
(1)填出如图表并求出线性回归方程$\stackrel{∧}{y}$=bx+a的回归系数a,b;
(2)估计使用10年时,维修费用是多少.
(用最小二乘法求线性回归方程系数公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
序号 | x | y | xy | x2 |
1 | 2 | 2.2 | 4.4 | 4 |
2 | 3 | 3.8 | 11.4 | 9 |
3 | 4 | 5.5 | 22 | 16 |
4 | 5 | 6.5 | 32.5 | 25 |
5 | 6 | 7.0 | 42 | 36 |
∑ | 20 | 25 | 112.3 | 90 |
(1)填出如图表并求出线性回归方程$\stackrel{∧}{y}$=bx+a的回归系数a,b;
(2)估计使用10年时,维修费用是多少.
(用最小二乘法求线性回归方程系数公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)