题目内容
【题目】已知函数 f(x)=a(|sinx|+|cosx|)﹣sin2x﹣1,a∈R.
(1)写出函数 f(x)的最小正周期(不必写出过程);
(2)求函数 f(x)的最大值;
(3)当a=1时,若函数 f(x)在区间(0,kπ)(k∈N*)上恰有2015个零点,求k的值.
【答案】(1)最小正周期为π.(2)见解析(3)k=1008.
【解析】
(1)由题意结合周期函数的定义直接求解即可;
(2)令,t∈[1,
],则当
时,
,
当时,
,易知
,分类比较
、
的大小即可得解;
(3)转化条件得当且仅当sin2x=0时,f(x)=0,则x∈(0,π]时,f(x)有且仅有两个零点,结合函数的周期即可得解.
(1)函数 f(x)的最小正周期为π.
(2)∵f(x)=a(|sinx|+|cosx|)﹣sin2x﹣1
=asin2x﹣1=a
(sin2x+1),
令t,t∈[1,
],
当时,
,
当时,
,
∵即
.
∴,
∵,
,
∴当时,
最大值为
;当
,
最大值为
.
(3)当a=1时,f(x),
若f(x)=0,则即
,
∴当且仅当sin2x=0时,f(x)=0,
∴x∈(0,π]时,f(x)有且仅有两个零点分别为,π,
∴2015=2×1007+1,
∴k=1008.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:
分组 | |||||
频数 | 3 | 11 | 18 | 12 | 6 |
(1)根据频数分布表计算成绩在的频率并计算这组数据的平均值
(同组的数据用该组区间的中点值代替);
(2)用分层抽样的方法从成绩在和
的学生中共抽取5人,从这5人中任取2人,求成绩在
和
中各有1人的概率.
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
表中,
.
(1)根据散点图判断,与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于
的回归方程;
(3)若单位时间内煤气输出量与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据,其回归直线
的斜率和截距的最小二乘法估计值分别为
,