题目内容
【题目】设函数f(x)的导函数为f′(x),若f(x)为偶函数,且在(0,1)上存在极大值,则f′(x)的图象可能为( )
A.
B.
C.
D.
【答案】C
【解析】解:根据题意,若f(x)为偶函数,则其导数f′(x)为奇函数,
分析选项:可以排除B、D,
又由函数f(x)在(0,1)上存在极大值,则其导数图象在(0,1)上存在零点,且零点左侧导数值符号为正,右侧导数值符号为负,
分析选项:可以排除A,C符合;
所以答案是:C.
【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: =yi﹣ , 称为相应于点(xi , yi)的残差(也叫随机误差);
租用单车数量x(千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 (1) | 2.4 | 2.1 | 1.6 | ||
残差 (1) | 0 | ﹣0.1 | 0.1 | |||
模型乙 | 估计值 (2) | 2.3 | 2 | 1.9 | ||
残差 (2) | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和Q1及Q2 , 并通过比较Q1 , Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入﹣成本).