题目内容

求值:
(1)已知cos(α-
β
2
)
=-
4
5
,sin(β-
α
2
)=
5
13
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值;
(2)已知tanα=4
3
,cos(α+β)=-
11
14
,α、β均为锐角,求cosβ的值.
分析:(1)利用角的变换(α-
β
2
)
+(β-
α
2
)
=
α+β
2
,确定α-
β
2
,β-
α
2
的范围,求出相关三角函数值,即可求出cos
α+β
2
的值;
(2)根据α为锐角,tanα=4
3
求出sinα,cosα,借助cosβ=cos[(α+β)-α]展开,求出cosβ的值.
解答:解:(1)(α-
β
2
)
+(β-
α
2
)
=
α+β
2

π
2
<α<π,0<β<
π
2

α-
β
2
(
π
4
,π)
β-
α
2
(-
π
2
π
4
)

∴sin(α-
β
2
)
=
1-cos2(α-
β
2
)
=
3
5
,cos(β-
α
2
)
=
1-sin2(β-
α
2
)
=
12
13

∴cos
α+β
2
=cos[(α-
β
2
)+(β-
α
2
)]
=cos(α-
β
2
)
cos(β-
α
2
)
-sin(α-
β
2
)
sin(β-
α
2
)

=(-
4
5
)
×
12
13
-
5
13
×
3
5
=-
63
65

(2)∵tanα=4
3
,且α为锐角,
sinα
cosα
=4
3
,即sinα=4
3
cosα,
又∵sin2α+cos2α=1,
∴sinα=
4
3
7
,cosα=
1
7

∵0<α,β<
π
2

∴0<α+β<π,
∴sin(α+β)=
1-cos2(α+β)
=
5
3
14

而β=(α+β)-α,
∴cosβ=cos[(α+β)-α]
=cos(α+β)cosα+sin(α+β)sinα=(-
11
14
)
×
1
7
+
5
3
14
×
4
3
7
=
1
2
点评:本题是基础题,考查三角函数的角的变换的技巧,根据三角函数角的范围求出有关的三角函数的值,是本题解答的关键,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网