题目内容
【题目】已知点,,C是抛物线上的动点.
(1)求周长的最小值;
(2)若C位于直线AB右下方,求面积的最大值.
【答案】(1)(2)
【解析】
(1)过作抛物线准线的垂线,垂足为,根据抛物线的定义可知,那么周长即为,为定值,则共线时周长最小,即得;(2)作与直线平行的直线,到直线的距离就是边上的高,且点在抛物线上,则当与抛物线相切时,面积的最大,设点,由抛物线在点处的切线斜率与直线的斜率相同,可得,即得点坐标,利用点到直线的距离公式,以及边的长度,由公式计算即得.
(1)过作抛物线准线的垂线,垂足为,如图1所示,
为抛物线焦点,,又为常数,共线时,周长最小,,周长最小值为.
(2)作与直线平行的直线,如图所示,
当与抛物线相切时,切点使得面积最大,此时到直线的距离就是边上的高,设切点,由得,,即,切点的坐标为,点到的距离为,的最大值为,即面积最大值为.
【题目】已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:
x | 0 | 40 | 60 | 120 |
Q | 0 | 20 |
(1)你认为哪一个是符合实际的函数模型,请说明理由;
(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.