题目内容
(本小题共14分)
矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上.
(I)求边所在直线的方程;
(II)求矩形外接圆的方程;
(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.
【答案】
(I)边所在直线的方程为
(II)矩形外接圆的方程为
(III)动圆的圆心的轨迹方程为
【解析】解:(I)因为边所在直线的方程为,且与垂直,所以直线的斜率为.
又因为点在直线上,
所以边所在直线的方程为.
.
(II)由解得点的坐标为,
因为矩形两条对角线的交点为.
所以为矩形外接圆的圆心.
又.
从而矩形外接圆的方程为.
(III)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,
所以,
即.
故点的轨迹是以为焦点,实轴长为的双曲线的左支.
因为实半轴长,半焦距.
所以虚半轴长.
从而动圆的圆心的轨迹方程为
练习册系列答案
相关题目