题目内容

(本小题共14分)

矩形的两条对角线相交于点边所在直线的方程为,点边所在直线上.

(I)求边所在直线的方程;

(II)求矩形外接圆的方程;

(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.

 

【答案】

(I)边所在直线的方程为

(II)矩形外接圆的方程为

(III)动圆的圆心的轨迹方程为

【解析】解:(I)因为边所在直线的方程为,且垂直,所以直线的斜率为

又因为点在直线上,

所以边所在直线的方程为

(II)由解得点的坐标为

因为矩形两条对角线的交点为

所以为矩形外接圆的圆心.

从而矩形外接圆的方程为

(III)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,

所以

故点的轨迹是以为焦点,实轴长为的双曲线的左支.

因为实半轴长,半焦距

所以虚半轴长

从而动圆的圆心的轨迹方程为

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网