题目内容

10.已知变量x、y满足$\left\{{\begin{array}{l}{x-y+5≥0}\\{x≤3}\\{x+y+k≥0}\end{array}}\right.$,且z=2x+4y的最小值为-6,则常数k=(  )
A.2B.0C.3$\sqrt{10}$D.9

分析 利用线性规划的知识,根据目标函数的几何意义,结合数形结合即可求出k的值.

解答 解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{4}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{4}$经过点C时,
直线y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x=3}\\{2x+4y=-6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,
即C(3,-3),此时C也在直线x+y+k=0上,即k=0.
故选:B

点评 本题主要考查线性规划的应用,利用目标函数的几何意义先求出k的值是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网