题目内容
10.已知变量x、y满足$\left\{{\begin{array}{l}{x-y+5≥0}\\{x≤3}\\{x+y+k≥0}\end{array}}\right.$,且z=2x+4y的最小值为-6,则常数k=( )A. | 2 | B. | 0 | C. | 3$\sqrt{10}$ | D. | 9 |
分析 利用线性规划的知识,根据目标函数的几何意义,结合数形结合即可求出k的值.
解答 解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{4}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{4}$经过点C时,
直线y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最小,此时z最小,
由$\left\{\begin{array}{l}{x=3}\\{2x+4y=-6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,
即C(3,-3),此时C也在直线x+y+k=0上,即k=0.
故选:B
点评 本题主要考查线性规划的应用,利用目标函数的几何意义先求出k的值是解决本题的关键.
练习册系列答案
相关题目
18.函数f(x)的定义域为R,f(-1)=3,对任意x∈R,f′(x)<3,则f(x)>3x+6的解集为( )
A. | (-1,1) | B. | (-1,+∞) | C. | (-∞,-1) | D. | (-∞,+∞) |
19.已知f(x)=$\left\{\begin{array}{l}{1,}&{x≥0}\\{-1,}&{x<0}\end{array}\right.$,则不等式x+(x+2)•f(x+2)≤5的解集是( )
A. | (-$∞,\frac{3}{2}$] | B. | (-$∞,-\frac{3}{2}$] | C. | ($\frac{3}{2},+∞$) | D. | (-$\frac{3}{2},\frac{3}{2}$] |