ÌâÄ¿ÄÚÈÝ
£¨2012•µÀÀïÇø¶þÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2
sin¦È£®
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA£¬B£¬ÈôµãPµÄ×ø±êΪ£¨3£¬
£©£¬Çó|PA|+|PB|£®
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
|
5 |
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA£¬B£¬ÈôµãPµÄ×ø±êΪ£¨3£¬
5 |
·ÖÎö£º£¨¢ñ£©°Ñ¦Ñ=2
sin¦ÈÁ½±ßͬʱ³ËÒԦѣ¬°Ñ x=¦Ñcos¦È£¬y=¦Ñsin¦È ´úÈë¿ÉµÃÔ²CµÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ t2-3
t+4=0£¬¸ù¾ÝÖ±ÏßlµÄ²ÎÊý·½³ÌÖвÎÊýµÄ¼¸ºÎÒâÒå¿ÉµÃ|PA|+|PB|=|t1|+|t2|=t1+t2£¬ÔÙÀûÓÃÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØϵÇó³ö½á¹û£®
5 |
£¨¢ò£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ t2-3
2 |
½â´ð£º½â£º£¨¢ñ£©ÓɦÑ=2
sin¦È µÃ x2+y2-2
y=0 ¼´ x2+(y-
)2=5£®
£¨¢ò£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ (3-
t)2+(
t)2=5£¬¼´ t2-3
t+4=0£®
ÓÉÓÚ¡÷=(3
)2-4¡Á4=2£¾0£¬¹Ê¿ÉÉè t1¡¢t2ÊÇÉÏÊö·½³ÌµÄÁ½Êµ¸ù£¬ËùÒÔ
£®
Ö±Ïßl¹ýµãP£¨3£¬
£©£¬¹ÊÓÉÉÏʽ¼°tµÄ¼¸ºÎÒâÒåµÃ£º|PA|+|PB|=|t1|+|t2|=t1+t2=3
£®
5 |
5 |
5 |
£¨¢ò£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ (3-
| ||
2 |
| ||
2 |
2 |
ÓÉÓÚ¡÷=(3
2 |
|
Ö±Ïßl¹ýµãP£¨3£¬
5 |
2 |
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÖ±ÏߵIJÎÊý·½³Ì¡¢Ô²µÄ¼«×ø±ê·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿