ÌâÄ¿ÄÚÈÝ

É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©½«º¯Êýy=f£¨x£©Í¼ÏóÏòÓÒƽÒÆÒ»¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=¦Õ£¨x£©µÄͼÏó£¬ÊÔд³öy=¦Õ£¨x£©µÄ½âÎöʽ¼°ÖµÓò£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
2
2
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÓÉÌâÒâ¿ÉµÃ ¦Õ£¨x£©=a2 £¨x-1£©2 £¬ÖµÓòΪ[0£¬+¡Þ£©£®  ¡­£¨2·Ö£©
£¨2£©²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬
µÈ¼ÛÓÚ£¨1-a2£© x2-2x+1£¾0 Ç¡ÓÐÈý¸öÕûÊý½â£¬¹Ê 1-a2£¼0£¬¼´ a£¾1£¬
¡à£¨1-a2£© x2-2x+1=[£¨£¨1-a£©x-1][£¨1+a£©x-1]£¾0£¬
ËùÒÔ
1
1-a
£¼x£¼
1
1+a
£¬ÓÖÒòΪ 0£¼
1
1+a
£¼1
£¬
ËùÒÔ -3¡Ü
1
1+a
£¼-2
£¬½âÖ®µÃ 
4
3
¡Üa£¼
3
2
£®  ¡­£¨6·Ö£©
£¨3£©ÉèF£¨x£©=f£¨x£©-g£¨x£©=
1
2
 x2-elnx£¬Ôò F¡ä£¨x£©=x-
e
x
=
(x-
e
)(x+
e
)
x
£®
ËùÒÔµ± 0£¼x£¼
e
 Ê±£¬F¡ä£¨x£©£¼0£»µ± x£¾
e
 Ê±£¬F¡ä£¨x£©£¾0£®
Òò´Ë x=
e
 Ê±£¬F£¨x£© È¡µÃ×îСֵ0£¬
Ôò f£¨x£©Óëg£¨x£©µÄͼÏóÔÚx=
e
´¦Óй«¹²µã £¨
e
£¬
e
2
£©£®   ¡­£¨8·Ö£©
Éèf£¨x£©Óëg£¨x£©´æÔÚ¡°·Ö½çÏß¡±£¬·½³ÌΪ y-
e
2
=k£¨x-
e
£©£¬¼´ y=kx+
e
2
-k
e
£¬
ÓÉ f£¨x£©¡Ýkx+
e
2
-k
e
£¬¶Ôx¡ÊRºã³ÉÁ¢£¬
Ôò x2-2kx-e+2k
e
¡Ý0 ÔÚx¡ÊRºã³ÉÁ¢£®
ËùÒÔ¡÷=4k2-4£¨2k
e
-e£©=4(k-
e
)
2
¡Ü0³ÉÁ¢£¬Òò´Ë k=
e
£®¡­£¨10·Ö£©
ÏÂÃæÖ¤Ã÷ g£¨x£©¡Ü
e
x
-
e
2
 £¨x£¾0£©ºã³ÉÁ¢£®
ÉèG£¨x£©=elnx-x
e
+
e
2
£¬Ôò G¡ä£¨x£©=
e
x
-
e
=
e
(
e
-x)
x
£®
ËùÒÔµ±  0£¼x£¼
e
ʱ£¬G¡ä£¨x£©£¾0£»µ±  x£¾
e
ʱ£¬G¡ä£¨x£©£¼0£®
Òò´Ë x=
e
ʱ£¬G£¨x£©È¡µÃ×î´óÖµ0£¬Ôò g£¨x£©¡Ü
e
x
-
e
2
£¨x£¾0£©³ÉÁ¢£®
¹ÊËùÇó¡°·Ö½çÏß¡±·½³ÌΪ£ºy=
e
x
-
e
2
£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡­£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø