题目内容

19.设函数fn(θ)=sinnθ+cosnθ,n∈N*,且f1(θ)=a,其中常数a为区间(0,1)内的有理数.
(1)求fn(θ)的表达式(用a和n表示)
(2)求证:对任意的正整数n,fn(θ)为有理数.

分析 (1)利用sinθ+cosθ=a,sin2θ+cos2θ=1,求出sinθ,可得fn(θ)的表达式(用α和n表示)
(2)利用二项式的展开式,即可得出结论.

解答 (1)解:由题意,sinθ+cosθ=a,sin2θ+cos2θ=1,
所以2sin2θ-2asinθ+a2-1=0,
所以sinθ=$\frac{a±\sqrt{2-{a}^{2}}}{2}$,
所以fn(θ)=($\frac{a+\sqrt{2-{a}^{2}}}{2}$)n+($\frac{a-\sqrt{2-{a}^{2}}}{2}$)n
(2)证明:fn(θ)=($\frac{a+\sqrt{2-{a}^{2}}}{2}$)n+($\frac{a-\sqrt{2-{a}^{2}}}{2}$)n
=2${C}_{n}^{0}$•$(\frac{a}{2})^{n}$+2${C}_{n}^{2}$•$(\frac{a}{2})^{n-2}•\frac{2-{a}^{2}}{4}$+…+…∈Q.

点评 本题考查同角三角函数关系,考查二项式定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网