题目内容
【题目】如图,在四棱柱中,底面为菱形,.
(1)证明:平面平面;
(2)若,是等边三角形,求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)根据面面垂直的判定定理可知,只需证明平面即可.
由为菱形可得,连接和与的交点,
由等腰三角形性质可得,即能证得平面;
(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值.
(1)如图,设与相交于点,连接,
又为菱形,故,为的中点.
又,故.
又平面,平面,且,
故平面,又平面,
所以平面平面.
(2)由是等边三角形,可得,故平面,
所以,,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.
不妨设,则,,
则,,,,,,
设为平面的法向量,
则即可取,
设为平面的法向量,
则即可取,
所以.
所以二面角的余弦值为0.
练习册系列答案
相关题目