题目内容
12.执行如图所示的程序框图,若输出结果为63,则M处的条件为( )A. | k<64? | B. | k≥64? | C. | k<32? | D. | k≥32? |
分析 模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=64时,应该满足条件,退出循环,输出S的值为63,从而可判断M处的条件为:k≥64?
解答 解:模拟执行程序框图,可得
k=1,S=0
不满足条件,S=1,k=2
不满足条件,S=3,k=4
不满足条件,S=7,k=8
不满足条件,S=15,k=16
不满足条件,S=31,k=32
不满足条件,S=63,k=64
由题意,此时,应该满足条件,退出循环,输出S的值为63.
故可判断M处的条件为:k≥64?
故选:B.
点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.
练习册系列答案
相关题目
3.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积是( )
A. | 6$\sqrt{5}$ | B. | 4($\sqrt{5}$+1) | C. | 4$\sqrt{5}$ | D. | 8 |
7.深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
申请意向 年龄 | 摇号 | 竞价(人数) | 合计 | |
电动小汽车(人数) | 非电动小汽车(人数) | |||
30岁以下 (含30岁) | 50 | 100 | 50 | 200 |
30至50岁 (含50岁) | 50 | 150 | 300 | 500 |
50岁以上 | 100 | 150 | 50 | 300 |
合计 | 200 | 400 | 400 | 1000 |
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
17.计算(log32-log318)÷81-${\;}^{\frac{1}{4}}$=( )
A. | -$\frac{3}{2}$ | B. | -6 | C. | $\frac{3}{2}$ | D. | 6 |
2.某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为$\frac{2}{5}$.
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.
专业 性别 | 中文 | 英语 | 数学 | 体育 |
男 | n | 1 | m | 1 |
女 | 1 | 1 | 1 | 1 |
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.