题目内容

设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
π
2
)=0
cn=an+
1
2an
,则数列{cn}的前n项和Sn为(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n
分析:依题意,可求得an-2an+1+an+2=0,于是知数列{an}是等差数列,设其公差为d,由a1=1,a2+a4=6,可求得an=n,于是知cn=an+
1
2an
=n+
1
2n
,利用分组求和的方法即可求得答案.
解答:解:∵f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx,
∴f′(x)|x=
π
2
=an-an+1+an+2-an+1•sinx|x=
π
2
-an+2cosx|x=
π
2

=an-2an+1+an+2
∵f′(
π
2
)=0,
∴an-2an+1+an+2=0,即2an+1=an+an+2
∴数列{an}是等差数列,设其公差为d,
∵a2+a4=6,
∴2a1+4d=6,a1=1,
∴d=1,
∴an=1+(n-1)×1=n,
∴cn=an+
1
2an
=n+
1
2n

∴Sn=c1+c2+…+cn
=(1+2+…+n)+(
1
2
+
1
22
+…+
1
2n

=
(1+n)n
2
+
1
2
[1-(
1
2
)
n
]
1-
1
2

=
n2+n+2
2
-
1
2n

故选:C.
点评:本题考查数列的求和,利用f′(
π
2
)=0确定数列{an}是等差数列是难点,考查等差关系的确定与其通项公式的应用,突出分组求和的应用,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网