题目内容
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
π |
2 |
1 |
2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:依题意,可求得an-2an+1+an+2=0,于是知数列{an}是等差数列,设其公差为d,由a1=1,a2+a4=6,可求得an=n,于是知cn=an+
=n+
,利用分组求和的方法即可求得答案.
1 |
2an |
1 |
2n |
解答:解:∵f(x)=(an-an+1+an+2)x+an+1•cosx-an+2sinx,
∴f′(x)|x=
=an-an+1+an+2-an+1•sinx|x=
-an+2cosx|x=
,
=an-2an+1+an+2,
∵f′(
)=0,
∴an-2an+1+an+2=0,即2an+1=an+an+2,
∴数列{an}是等差数列,设其公差为d,
∵a2+a4=6,
∴2a1+4d=6,a1=1,
∴d=1,
∴an=1+(n-1)×1=n,
∴cn=an+
=n+
,
∴Sn=c1+c2+…+cn
=(1+2+…+n)+(
+
+…+
)
=
+
=
-
.
故选:C.
∴f′(x)|x=
π |
2 |
π |
2 |
π |
2 |
=an-2an+1+an+2,
∵f′(
π |
2 |
∴an-2an+1+an+2=0,即2an+1=an+an+2,
∴数列{an}是等差数列,设其公差为d,
∵a2+a4=6,
∴2a1+4d=6,a1=1,
∴d=1,
∴an=1+(n-1)×1=n,
∴cn=an+
1 |
2an |
1 |
2n |
∴Sn=c1+c2+…+cn
=(1+2+…+n)+(
1 |
2 |
1 |
22 |
1 |
2n |
=
(1+n)n |
2 |
| ||||
1-
|
=
n2+n+2 |
2 |
1 |
2n |
故选:C.
点评:本题考查数列的求和,利用f′(
)=0确定数列{an}是等差数列是难点,考查等差关系的确定与其通项公式的应用,突出分组求和的应用,属于难题.
π |
2 |
练习册系列答案
相关题目