题目内容

已知锐角△ABC中,角A、B、C的对边分别为a,b,c,a=
2
,b=
3
,B=
π
3

(Ⅰ)求角A的大小;
(Ⅱ)设函数f(x)=cosB•sin2x+cos2x,当x∈[-
π
4
,0]
时,求f(x)的值域.
分析:(1)先根据正弦定理可求得求出sinA进而根据角A的锐角,得到角A的值.
(2)先根据两角和与差的正弦定理化简函数f(x),再由x的范围求出2x+
π
4
的范围,再由正弦函数的性质求出sin(2x+
π
4
)的范围,求出函数f(x)的值域.
解答:解:(1)由正弦定理得
2
sinA
=
3
sin
π
3
,sinA=
2
2

又A为锐角,∴A=
π
4

(2)f(x)=
1
2
sin2x+
1
2
cos2x+
1
2
=
2
2
sin(2x+
π
4
)
+
1
2

-
π
4
≤x≤0
-
π
4
≤2x+
π
4
π
4

-
2
2
≤sin(2x+
π
4
)≤
2
2

0≤
2
2
sin(2x+
π
4
)+
1
2
≤1

所以f(x)的值域为[0,1]
点评:本题主要考查正弦定理和两角和与差的正弦定理的应用.三角函数部分公式比较多,不容易记,一定要强化记忆.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网