题目内容
(2009•淮安模拟)已知锐角△ABC中内角A,B,C的对边分别为a,b,c,且c=6,向量
=(2sinC,-
),
=(cos2C,2cos2
-1),且
∥
.
(1)求C的大小;
(2)若sinA=
,求sin(
-B)的值.
s |
3 |
t |
C |
2 |
s |
t |
(1)求C的大小;
(2)若sinA=
1 |
3 |
π |
3 |
分析:(1)由
∥
,得2sinC(2cos2
-1)=-
cos2C,可求得tan2C,从而可得2C,进而得到C;
(2)由C=
,得A=
-B,则sin(
-B)=sin[(
-B)-
]=sin(A-
),利用差角的正弦公式可求;
s |
t |
C |
2 |
3 |
(2)由C=
π |
3 |
2π |
3 |
π |
3 |
2π |
3 |
π |
3 |
π |
3 |
解答:(1)∵
∥
,∴2sinC(2cos2
-1)=-
cos2C,
∴sin2C=-
cos2C,即tan2C=-
,
又∵C为锐角,∴2C∈(0,π),∴2C=
,∴C=
;
(2)∵C=
,∴A=
-B,
∴sin(
-B)=sin[(
-B)-
]=sin(A-
),
又sinA=
,且A为锐角,∴cosA=
,
∴sin(
-B)=sin(A-
)=sinAcos
-cosAsin
=
;
s |
t |
C |
2 |
3 |
∴sin2C=-
3 |
3 |
又∵C为锐角,∴2C∈(0,π),∴2C=
2π |
3 |
π |
3 |
(2)∵C=
π |
3 |
2π |
3 |
∴sin(
π |
3 |
2π |
3 |
π |
3 |
π |
3 |
又sinA=
1 |
3 |
2
| ||
3 |
∴sin(
π |
3 |
π |
3 |
π |
3 |
π |
3 |
1-2
| ||
6 |
点评:本题考查平面向量共线的充要条件、和差角公式,考查学生的运算求解能力.
练习册系列答案
相关题目