题目内容
【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=,b2-a2=c2.
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.
【答案】(1)tanC=2,(2)b=3.
【解析】
(1)先根据正弦定理化边为角,再根据二倍角余弦公式以及三角形内角关系化为关于C角的方程,解得tanC的值;(2)先根据三角形面积公式得bc的值,再根据同角三角函数关系得sinC,由诱导公式可得sinB,再根据正弦定理可得b,c关系,解方程组可得b的值.
(1)由b2-a2=c2及正弦定理得sin2B-=sin2C.所以-cos2B=sin2C.①
又由A=,即B+C=π,
得-cos2B=-cos2=-cos=sin2C=2sinCcosC,②
由①②解得tanC=2.
(2)由tanC=2,C∈(0,π)得sinC=,cosC=,因为sinB=sin(A+C)=sin,
所以sinB=,由正弦定理得c=b,又因为A=, bcsinA=3,
所以bc=6,故b=3.
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |