题目内容

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

【答案】解:(Ⅰ)∵sinA+ cosA=0,
∴tanA=
∵0<A<π,
∴A=
由余弦定理可得a2=b2+c2﹣2bccosA,
即28=4+c2﹣2×2c×(﹣ ),
即c2+2c﹣24=0,
解得c=﹣6(舍去)或c=4,

(Ⅱ)∵c2=b2+a2﹣2abcosC,
∴16=28+4﹣2×2 ×2×cosC,
∴cosC=
∴sinC=
∴tanC=
在Rt△ACD中,tanC=
∴AD=
∴S△ACD= ACAD= ×2× =
∵S△ABC= ABACsin∠BAD= ×4×2× =2
∴S△ABD=S△ABC﹣S△ADC=2 =
【解析】(Ⅰ)先根据同角的三角函数的关系求出A,再根据余弦定理即可求出,
(Ⅱ)先根据夹角求出cosC,求出AD的长,再求出△ABC和△ADC的面积,即可求出△ABD的面积.
【考点精析】解答此题的关键在于理解同角三角函数基本关系的运用的相关知识,掌握同角三角函数的基本关系:;(3) 倒数关系:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网