题目内容
已知P、A、B、C是平面内四个不同的点,且++=,则( )A.C三点共线
B.P三点共线
C.P三点共线
D.P三点共线
【答案】分析:根据已知式子和选项的特点,把 移到另一边,再由相反向量知 =-,利用向量加法的首尾相连进行化简,再用同样的方法化简得到,最后即可解决问题.
解答:解:∵,
∴+=-=+=,
∴=-=2 .
故,从而三点P,B,A共线
故选B.
点评:本题考查向量加法的首尾相连法则和相反向量的定义,是基础题.
解答:解:∵,
∴+=-=+=,
∴=-=2 .
故,从而三点P,B,A共线
故选B.
点评:本题考查向量加法的首尾相连法则和相反向量的定义,是基础题.
练习册系列答案
相关题目
已知P,A,B,C是平面内四点,且
+
+
=
,那么一定有( )
PA |
PB |
PC |
AC |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知P、A、B、C是平面内四个不同的点,且
+
+
=
,则( )
PA |
PB |
PC |
AC |
A、C三点共线 |
B、P三点共线 |
C、P三点共线 |
D、P三点共线 |