题目内容

【题目】三棱锥S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB=
(1)证明:SC⊥BC;
(2)求三棱锥的体积VS﹣ABC

【答案】解:(1)∵SA⊥AB SA⊥AC AB∩AC=A
∴SA⊥平面ABC,∴AC为SC在平面ABC内的射影,
又∵BC⊥AC,由三垂线定理得:SC⊥BC
(2)在△ABC中,AC⊥BC,AC=2,BC=,∴AB= =
∵SA⊥AB,∴△SAB为Rt△,SB=,∴SA==2
∵SA⊥平面ABC,∴SA为棱锥的高,
∴VSABC=××AC×BC×SA=×2××2=

【解析】(1)因为SA⊥面ABC,AC为SC在面ABC内的射影,由三垂线定理可直接得证.
(2)由题意可直接找出侧面SBC与底面ABC所成二面角的平面角是∠SCA,在直角三角形中求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网