题目内容
已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
(1)。
(2)。
(2)。
试题分析:(1)代入点A(3,1)得m=1或5,得m=1 2分
设PF斜率为k,
5分
7分
列方程组得:解得:
所求椭圆方程为 10分
(2)设点Q 12分
16分
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理,简化解题过程。通过向量的坐标运算,得到三角函数式,应用辅助角公式“化一”后,确定数量积的范围。
练习册系列答案
相关题目