题目内容

设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且
Sn
Tn
=
n
2n+1
,则logb5a5=
9
19
9
19
分析:设{an}的公比为q,{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.求出Sn和Tn,由于
Sn
Tn
=
n
2n+1
=
lga1+
n-1
2
lgq
lgb1+
n-1
2
lgp
,根据 logb5a5=
lga5
lgb5
=
lga1+4lgq
lgb1+4lgp
=
S9
T9
,运算求得结果.
解答:解:设正项等比数列{an}的公比为q,设正项等比数列{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.
故 Sn =n•lga1+
n(n-1)
2
• lgq
,同理可得 Tn =n•lgb1+
n(n-1)
2
• lgp

Sn
Tn
=
n
2n+1
=
lga1+
n-1
2
lgq
lgb1+
n-1
2
lgp

logb5a5=
lga5
lgb5
=
lga1+4lgq
lgb1+4lgp
=
S9
T9
=
9
19

故答案为
9
19
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,对数的运算性质以及等差数列的前n项和公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网