题目内容
设数列{an},{bn}都是正项等比数列,Sn,Tn分别为数列{lgan}与{lgbn}的前n项和,且
=
,则logb5a5=
.
Sn |
Tn |
n |
2n+1 |
9 |
19 |
9 |
19 |
分析:设{an}的公比为q,{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.求出Sn和Tn,由于
=
=
,根据 logb5a5=
=
=
,运算求得结果.
Sn |
Tn |
n |
2n+1 |
lga1+
| ||
lgb1+
|
lga5 |
lgb5 |
lga1+4lgq |
lgb1+4lgp |
S9 |
T9 |
解答:解:设正项等比数列{an}的公比为q,设正项等比数列{bn}的公比为p,则数列{lgan}是等差数列,公差为lgq,{lgbn}是等差数列,公差为lgp.
故 Sn =n•lga1+
• lgq,同理可得 Tn =n•lgb1+
• lgp.
又
=
=
,
∴logb5a5=
=
=
=
,
故答案为
.
故 Sn =n•lga1+
n(n-1) |
2 |
n(n-1) |
2 |
又
Sn |
Tn |
n |
2n+1 |
lga1+
| ||
lgb1+
|
∴logb5a5=
lga5 |
lgb5 |
lga1+4lgq |
lgb1+4lgp |
S9 |
T9 |
9 |
19 |
故答案为
9 |
19 |
点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,对数的运算性质以及等差数列的前n项和公式的应用,属于中档题.
练习册系列答案
相关题目