题目内容

7.已知函数f(x)=$\frac{1}{2}({a}^{x}+{a}^{-x})$(a>0)的图象过点(2,$\frac{41}{9}$).
(1)求证:函数f(x)为偶函数;
(2)求函数f(x)的解析式.
(3)求证:函数f(x)在(0,+∞)上为增函数.

分析 (1)利用偶函数的定义证明即可;
(2)利用f(x)=$\frac{1}{2}({a}^{x}+{a}^{-x})$(a>0)的图象过点(2,$\frac{41}{9}$),建立方程,即可求函数f(x)的解析式.
(3)利用导数,证明其大于0,即可证明函数f(x)在(0,+∞)上为增函数.

解答 (1)证明:∵f(x)=$\frac{1}{2}({a}^{x}+{a}^{-x})$,
∴f(-x)=f(x),
∴函数f(x)为偶函数;
(2)解:∵f(x)=$\frac{1}{2}({a}^{x}+{a}^{-x})$(a>0)的图象过点(2,$\frac{41}{9}$).
∴$\frac{1}{2}({a}^{2}+{a}^{-2})$=$\frac{41}{9}$,
∴a=3,
∴f(x)=$\frac{1}{2}$(3x+3-x);
(3)证明:∵f(x)=$\frac{1}{2}$(3x+3-x),
∴f′(x)=$\frac{1}{2}$(3xln3-3-xln3)=$\frac{ln3}{2}$•$\frac{{3}^{2x}-1}{{3}^{x}}$
∵x>0,∴f′(x)>0,
∴函数f(x)在(0,+∞)上为增函数.

点评 本题考查函数的奇偶性、单调性,考查函数解析式的确定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网