题目内容
【题目】已知函数 的最小正周期是 ,若将其图象向右平移 个单位后得到的图象关于 轴对称,则函数 的图象( )
A.关于直线 对称
B.关于直线 对称
C.关于点 对称
D.关于点 对称
【答案】D
【解析】∵函数 的最小正周期是 ,∴ ,
将其图象向右平移 个单位后得到的函数的表达式为 ,又 的图象关于 轴对称,
∴ ,∴ ,
当 时, ,即
易得: , ,函数 的图象关于点 对称. 所以答案是:D
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
练习册系列答案
相关题目
【题目】(某保险公司有一款保险产品的历史户获益率(获益率=获益÷保费收入)的频率分布直方图如图所示:
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验若每份保单的保费在 元的基础上每增加 元,对应的销量 (万份)与 (元)有较强线性相关关系,从历史销售记录中抽样得到如下 组 与 的对应数据:
(元) | |||||
销量 (万份) |
(ⅰ)根据数据计算出销量 (万份)与 (元)的回归方程为 ;
(ⅱ)若把回归方程 当作 与 的线性关系,用(Ⅰ)中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.
参考公示: