题目内容
【题目】已知函数f(x)=aln(x+1)﹣x2 , 在(1,2)内任取两个实数x1 , x2(x1≠x2),若不等式 >1恒成立,则实数a的取值范围为( )
A.(28,+∞)
B.[15,+∞)
C.[28,+∞)
D.(15,+∞)
【答案】C
【解析】解:因实数x1 , x2在区间(1,2)内,
故x1+1 和x2+1在区间(2,3)内.
不等式 >1恒成立,
即为 >0,
即有函数y=f(x)﹣x在(2,3)内递增.
函数y=f(x)﹣x=aln(x+1)﹣x2﹣x的导数为y′= ﹣2x﹣1,
即有y′≥0在(2,3)恒成立.
即a≥(2x+1)(x+1)在(2,3)内恒成立.
由于二次函数y=2x2+3x+1在[2,3]上是单调增函数,
故x=3时,y=2x2+3x+1 在[2,3]上取最大值为28,即有a≥28,
所以答案是[28,+∞).
故选:C.
【题目】某研究所设计了一款智能机器人,为了检验设计方案中机器人动作完成情况,现委托某工厂生产个机器人模型,并对生产的机器人进行编号: ,采用系统抽样的方法抽取一个容量为的机器人样本,试验小组对个机器人样本的动作个数进行分组,频率分布直方图及频率分布表中的部分数据如图所示,请据此回答如下问题:
分组 | 机器人数 | 频率 |
0.08 | ||
10 | ||
10 | ||
6 |
(1)补全频率分布表,画出频率分布直方图;
(2)若随机抽的第一个号码为,这个机器人分别放在三个房间,从到在房间,从到在房间,从到在房间,求房间被抽中的人数是多少?
(3)从动作个数不低于的机器人中随机选取个机器人,该个机器人中动作个数不低于的机器人记为,求的分布列与数学期望.
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试,测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需要的距离),无酒状态与酒后状态下的试验数据分别列于表
停车距离(米) | |||||
频数 | 26 | 8 | 2 |
表
平均每毫升血液酒精含量 毫克 | 10 | 30 | 50 | 70 | 90 | /tr>
平均停车距离米 | 30 | 50 | 60 | 70 | 90 |
已知表 数据的中位数估计值为,回答以下问题.
(Ⅰ)求的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表的数据计算关于的回归方程;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”大于(Ⅰ)中无酒状态下的停车距离平均数的倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:回归方程中, )