题目内容

(2013•天津)设函数f(x)=ex+x-2,g(x)=lnx+x2-3.若实数a,b满足f(a)=0,g(b)=0,则(  )
分析:先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围即可.
解答:解:①由于y=ex及y=x-2关于x是单调递增函数,∴函数f(x)=ex+x-2在R上单调递增,
分别作出y=ex,y=2-x的图象,∵f(0)=1+0-2<0,f(1)=e-1>0,f(a)=0,∴0<a<1.
同理g(x)=lnx+x2-3在R+上单调递增,g(1)=ln1+1-3=-2<0,g(
3
)=ln
3
+(
3
)2-3=
1
2
ln3>0
,g(b)=0,∴1<b<
3

∴g(a)=lna+a2-3<g(1)=ln1+1-3=-2<0,
f(b)=eb+b-2>f(1)=e+1-2=e-1>0.
∴g(a)<0<f(b).
故选A.
点评:熟练掌握函数的单调性、函数零点的判定定理是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网