题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知A= ,bsin( +C)﹣csin( +B)=a,
(1)求证:B﹣C=
(2)若a= ,求△ABC的面积.

【答案】
(1)证明:由bsin( +C)﹣csin( )=a,由正弦定理可得sinBsin( +C)﹣sinCsin( )=sinA.

sinB( )﹣sinC( )=

整理得sinBcosC﹣cosBsinC=1,

即sin(B﹣C)=1,

由于0<B,C ,从而B﹣C=


(2)解:B+C=π﹣A= ,因此B= ,C=

由a= ,A= ,得b= =2sin ,c= =2sin

所以三角形的面积S= = cos sin =


【解析】(1)通过正弦定理以及两角和与差的三角函数化简已知表达式,推出B﹣C的正弦函数值,然后说明B﹣C= .(2)利用a= ,通过正弦定理求出b,c,然后利用三角形的面积公式求△ABC的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网