题目内容
【题目】某地拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家计了一个招标方案:两家公司从6个招标问题中随机抛取3个问题,已知这6个问中,甲公司可正确回答其中的4道题,而乙公司能正确回答每道题目的概率均为,且甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(I)求甲、乙两家公司共答对2道题的概率;
(II)设X为乙公司正确回答的题数,求随机变量X的分布列和数学期望.
【答案】(1);(2)见解析.
【解析】分析:(I)根据互斥事件的概率公式、独立事件概率公式,结合组合知识利用古典概型概率公式可得出两家公司答对题的概率;(II)根据独立重复试验公式概率公式计算随机变量的概率,从而可得的分布列,利用二项分布的期望公式可得的数学期望.
详解: (I)由题意可知,所求概率:
(II)乙公司正确回答的题数X的所有可能取值为0,1,2,3
∴X得分布列为:
∵ ∴
【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对车辆状况好评 | |||
对车辆状况不满意 | |||
合计 |
(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过向用户随机派送每张面额为元,元,元的 三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是,,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.
参考数据:
参考公式:,其中.
【题目】十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量单位:吨的历史统计数据,得到如下频率分布表:
污水量 |
|
|
|
|
|
|
频率 |
|
|
|
|
|
|
将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.
(Ⅰ)求在未来3年里,至1年污水排放量的概率;
(Ⅱ)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:
方案一:防治350吨的污水排放,每年需要防治费万元;
方案二:防治310吨的污水排放,每年需要防治费2万元;
方案三:不采取措施.
试比较上述三种方案,哪种方案好,并请说明理由.