题目内容
在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.
(1)90°(2)见解析
【解析】(1)【解析】
以D为坐标原点,DA、DC、DD1分别为x、y、z轴建立空间直角坐标系如图.
则相应点的坐标分别为D1(0,0,2),A(1,0,0),C(0,1,0),E(1,1,1),∴=(0,0,2)-(1,1,1)=(-1,-1,1),
=(1,1,1)-(1,0,0)=(0,1,1),
=(0,1,0)-(1,0,0)=(-1,1,0).
设平面AED1、平面AEC的法向量分别为m=(a,b,1),n=(c,d,1).
由
由
∴m=(2,-1,1),n=(-1,-1,1),∴cosm,n===0,
∴二面角D1AEC的大小为90°.
(2)证明:取DD1的中点G,连结GB、GF.
∵E、F分别是棱BB1、AD的中点,
∴GF∥AD1,BE∥D1G且BE=D1G,
∴四边形BED1G为平行四边形,∴D1E∥BG.
又D1E、D1A平面AD1E,BG、GF?平面AD1E,
∴BG∥平面AD1E,GF∥平面AD1E.
∵GF、GB平面BGF,∴平面BGF∥平面AD1E.
∵BF?平面AD1E,∴直线BF∥平面AD1E.
(或者:建立空间直角坐标系,用空间向量来证明直线BF∥平面AD1E,亦可)
练习册系列答案
相关题目