题目内容

16.已知数列{an}满足$\frac{{a}_{n}}{n}$-$\frac{{a}_{n-1}}{n-1}$=$\frac{1}{n(n-1)}$ (n≥2),a1=1.
(1)设bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

分析 (Ⅰ)通过裂项可知$\frac{{a}_{n}}{n}$-$\frac{{a}_{n-1}}{n-1}$=$\frac{1}{n-1}$-$\frac{1}{n}$,进而利用累加法计算即得结论;
(Ⅱ)通过(Ⅰ)知an=2n-1,利用等差数列的求和公式计算即得结论.

解答 解:(Ⅰ)由已知得:$\frac{{a}_{n}}{n}$-$\frac{{a}_{n-1}}{n-1}$=$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴$\frac{{a}_{n-1}}{n-1}$-$\frac{{a}_{n-2}}{n-2}$=$\frac{1}{n-2}$-$\frac{1}{n-1}$,

$\frac{{a}_{2}}{2}$-$\frac{{a}_{1}}{1}$=1-$\frac{1}{2}$,
以上各式相加得$\frac{{a}_{n}}{n}$-$\frac{{a}_{1}}{1}$=1-$\frac{1}{n}$,
即bn=$\frac{{a}_{n}}{n}$=$\frac{{a}_{1}}{1}$+1-$\frac{1}{n}$=2-$\frac{1}{n}$;
(Ⅱ)由(Ⅰ)知$\frac{{a}_{n}}{n}$=2-$\frac{1}{n}$,即an=2n-1,
∴数列{an}是首项为1、公差为2的等差数列,
∴Sn=$\frac{n(1+2n-1)}{2}$=n2

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网