题目内容
13.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$,离心率$e=\frac{{2\sqrt{2}}}{3}$,且过点$(2\sqrt{2},\frac{1}{3})$,(1)求椭圆方程;
(2)Rt△ABC以A(0,b)为直角顶点,边AB,BC与椭圆交于B,C两点,求△ABC面积的最大值.
分析 (1)运用离心率公式和a,b,c的关系,以及点满足方程,解方程,可得a,b,进而得到椭圆方程;
(2)分别设出AB,AC的方程,代入椭圆方程,求得B,C的横坐标,运用弦长公式,以及三角形的面积公式,结合基本不等式,即可得到最大值.
解答 解:(1)由$e=\frac{{2\sqrt{2}}}{3}$,即$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,又a2-b2=c2,得a=3b,
把点$(2\sqrt{2},\frac{1}{3})$带入椭圆方程可得:$\frac{{{{(2\sqrt{2})}^2}}}{{9{b^2}}}+\frac{{{{(\frac{1}{3})}^2}}}{b^2}=1⇒b=1$,
所以椭圆方程为:$\frac{x^2}{9}+{y^2}=1$;
(2)不妨设AB的方程y=kx+1,
则AC的方程为$y=-\frac{1}{k}x+1$.
由$\left\{\begin{array}{l}y=kx+1\\ \frac{x^2}{9}+{y^2}=1\end{array}\right.$得:(1+9k2)x2+18kx=0$⇒{x_B}=\frac{-18k}{{1+9{k^2}}}$,
k用$-\frac{1}{k}$代入,可得${x_C}=\frac{18k}{{9+{k^2}}}$,
从而有$|{AB}|=\sqrt{1+{k^2}}\frac{18k}{{1+9{k^2}}},|{AC}|=\sqrt{1+\frac{1}{k^2}}\frac{18k}{{9+{k^2}}}$,
于是 $S{\;}_{△ABC}=\frac{1}{2}|{AB}||{AC}|=162\frac{{k(1+{k^2})}}{{(1+9{k^2})(9+{k^2})}}=162\frac{{k+\frac{1}{k}}}{{9({k^2}+\frac{1}{k^2})+82}}$.
令$t=k+\frac{1}{k}≥2$,有$S{\;}_{△ABC}=\frac{162t}{{9{t^2}+64}}=\frac{162}{{9t+\frac{64}{t}}}≤\frac{27}{8}$,
当且仅当$t=\frac{8}{3}>2$,${({S_{△ABC}})_{max}}=\frac{27}{8}$.
点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程和椭圆方程,求得交点,同时考查三角形的面积公式和基本不等式的运用,属于中档题.
A. | {2} | B. | {$\sqrt{2}$} | C. | {-$\sqrt{2}$,1,$\sqrt{2}$,2} | D. | {1,$\sqrt{2}$,2} |