题目内容
【题目】已知,函数,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在上有唯一零点;
(Ⅱ)记x0为函数在上的零点,证明:
(ⅰ);
(ⅱ).
【答案】(I)证明见解析,(II)(i)证明见解析,(ii)证明见解析.
【解析】
(I)先利用导数研究函数单调性,再结合零点存在定理证明结论;
(II)(i)先根据零点化简不等式,转化求两个不等式恒成立,构造差函数,利用导数求其单调性,根据单调性确定最值,即可证得不等式;
(ii)先根据零点条件转化:,再根据放缩,转化为证明不等式,最后构造差函数,利用导数进行证明.
(I)在上单调递增,
,
所以由零点存在定理得在上有唯一零点;
(II)(i),
,
令
一方面: ,
在单调递增,,
,
另一方面:,
所以当时,成立,
因此只需证明当时,
因为
当时,,当时,,
所以,
在单调递减,,,
综上,.
(ii),
,,
,因为,所以,
,
只需证明,
即只需证明,
令,
则,
,即成立,
因此.
练习册系列答案
相关题目