题目内容

15.设数列 {an}的前n项和为Sn,n∈N*.已知a1=1,a2=$\frac{3}{2}$,a3=$\frac{5}{4}$,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1
(1)求a4的值;
(2)证明:{an+1-$\frac{1}{2}$an}为等比数列;
(3)求数列{an}的通项公式.

分析 (1)直接在数列递推式中取n=2,求得${a}_{4}=\frac{7}{8}$;
(2)由4Sn+2+5Sn=8Sn+1+Sn-1(n≥2),变形得到4an+2+an=4an+1(n≥2),进一步得到$\frac{{a}_{n+2}-\frac{1}{2}{a}_{n+1}}{{a}_{n+1}-\frac{1}{2}{a}_{n}}=\frac{1}{2}$,由此可得数列{${a}_{n+1}-\frac{1}{2}{a}_{n}$}是以${a}_{2}-\frac{1}{2}{a}_{1}$为首项,公比为$\frac{1}{2}$的等比数列;
(3)由{${a}_{n+1}-\frac{1}{2}{a}_{n}$}是以${a}_{2}-\frac{1}{2}{a}_{1}$为首项,公比为$\frac{1}{2}$的等比数列,可得${a}_{n+1}-\frac{1}{2}{a}_{n}=(\frac{1}{2})^{n-1}$.进一步得到$\frac{{a}_{n+1}}{(\frac{1}{2})^{n+1}}-\frac{{a}_{n}}{(\frac{1}{2})^{n}}=4$,说明{$\frac{{a}_{n}}{(\frac{1}{2})^{n}}$}是以$\frac{{a}_{1}}{\frac{1}{2}}=2$为首项,4为公差的等差数列,由此可得数列{an}的通项公式.

解答 (1)解:当n=2时,4S4+5S2=8S3+S1,即$4(1+\frac{3}{2}+\frac{5}{4}+{a}_{4})+5(1+\frac{3}{2})=8(1+\frac{3}{2}+\frac{5}{4})+1$,
解得:${a}_{4}=\frac{7}{8}$;
(2)证明:∵4Sn+2+5Sn=8Sn+1+Sn-1(n≥2),∴4Sn+2-4Sn+1+Sn-Sn-1=4Sn+1-4Sn(n≥2),
即4an+2+an=4an+1(n≥2),
∵$4{a}_{3}+{a}_{1}=4×\frac{5}{4}+1=6=4{a}_{2}$,∴4an+2+an=4an+1
∵$\frac{{a}_{n+2}-\frac{1}{2}{a}_{n+1}}{{a}_{n+1}-\frac{1}{2}{a}_{n}}=\frac{4{a}_{n+2}-2{a}_{n+1}}{4{a}_{n+1}-2{a}_{n}}=\frac{4{a}_{n+1}-{a}_{n}-2{a}_{n+1}}{4{a}_{n+1}-2{a}_{n}}$=$\frac{2{a}_{n+1}-{a}_{n}}{2(2{a}_{n+1}-{a}_{n})}=\frac{1}{2}$.
∴数列{${a}_{n+1}-\frac{1}{2}{a}_{n}$}是以${a}_{2}-\frac{1}{2}{a}_{1}$=1为首项,公比为$\frac{1}{2}$的等比数列;
(3)解:由(2)知,{${a}_{n+1}-\frac{1}{2}{a}_{n}$}是以${a}_{2}-\frac{1}{2}{a}_{1}$为首项,公比为$\frac{1}{2}$的等比数列,
∴${a}_{n+1}-\frac{1}{2}{a}_{n}=(\frac{1}{2})^{n-1}$.
即$\frac{{a}_{n+1}}{(\frac{1}{2})^{n+1}}-\frac{{a}_{n}}{(\frac{1}{2})^{n}}=4$,
∴{$\frac{{a}_{n}}{(\frac{1}{2})^{n}}$}是以$\frac{{a}_{1}}{\frac{1}{2}}=2$为首项,4为公差的等差数列,
∴$\frac{{a}_{n}}{(\frac{1}{2})^{n}}=2+(n-1)×4=4n-2$,即${a}_{n}=(4n-2)×(\frac{1}{2})^{n}=(2n-1)×(\frac{1}{2})^{n-1}$,
∴数列{an}的通项公式是${a}_{n}=(2n-1)×(\frac{1}{2})^{n-1}$.

点评 本题考查了数列递推式,考查了等比关系的确定,考查了等比数列的通项公式,关键是灵活变形能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网