ÌâÄ¿ÄÚÈÝ
3£®Ä³É½ÇøÍâΧÓÐÁ½ÌõÏ໥´¹Ö±µÄÖ±ÏßÐ͹«Â·£¬Îª½øÒ»²½¸ÄÉÆɽÇøµÄ½»Í¨ÏÖ×´£¬¼Æ»®ÐÞ½¨Ò»ÌõÁ¬½ÓÁ½Ìõ¹«Â·ºÍɽÇø±ß½çµÄÖ±ÏßÐ͹«Â·£¬¼ÇÁ½ÌõÏ໥´¹Ö±µÄ¹«Â·Îªl1£¬l2£¬É½Çø±ß½çÇúÏßΪC£¬¼Æ»®ÐÞ½¨µÄ¹«Â·Îªl£¬ÈçͼËùʾ£¬M£¬NΪCµÄÁ½¸ö¶Ëµã£¬²âµÃµãMµ½l1£¬l2µÄ¾àÀë·Ö±ðΪ5ǧÃ׺Í40ǧÃ×£¬µãNµ½l1£¬l2µÄ¾àÀë·Ö±ðΪ20ǧÃ׺Í2.5ǧÃ×£¬ÒÔl2£¬l1ÔÚµÄÖ±Ïß·Ö±ðΪx£¬yÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£¬¼ÙÉèÇúÏßC·ûºÏº¯Êýy=$\frac{a}{{x}^{2}+b}$£¨ÆäÖÐa£¬bΪ³£Êý£©Ä£ÐÍ£®£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©É蹫·lÓëÇúÏßCÏàÇÐÓÚPµã£¬PµÄºá×ø±êΪt£®
¢ÙÇëд³ö¹«Â·l³¤¶ÈµÄº¯Êý½âÎöʽf£¨t£©£¬²¢Ð´³öÆ䶨ÒåÓò£»
¢Úµ±tΪºÎֵʱ£¬¹«Â·lµÄ³¤¶È×î¶Ì£¿Çó³ö×î¶Ì³¤¶È£®
·ÖÎö £¨1£©ÓÉÌâÒâÖª£¬µãM£¬NµÄ×ø±ê·Ö±ðΪ£¨5£¬40£©£¬£¨20£¬2.5£©£¬½«Æä·Ö±ð´úÈëy=$\frac{a}{{x}^{2}+b}$£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóa£¬bµÄÖµ£»
£¨2£©¢ÙÇó³öÇÐÏßlµÄ·½³Ì£¬¿ÉµÃA£¬BµÄ×ø±ê£¬¼´¿Éд³ö¹«Â·l³¤¶ÈµÄº¯Êý½âÎöʽf£¨t£©£¬²¢Ð´³öÆ䶨ÒåÓò£»
¢ÚÉèg£¨t£©=${t}^{2}+\frac{4¡Á1{0}^{6}}{{t}^{4}}$£¬ÀûÓõ¼Êý£¬È·¶¨µ¥µ÷ÐÔ£¬¼´¿ÉÇó³öµ±tΪºÎֵʱ£¬¹«Â·lµÄ³¤¶È×î¶Ì£¬²¢Çó³ö×î¶Ì³¤¶È£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬µãM£¬NµÄ×ø±ê·Ö±ðΪ£¨5£¬40£©£¬£¨20£¬2.5£©£¬
½«Æä·Ö±ð´úÈëy=$\frac{a}{{x}^{2}+b}$£¬µÃ$\left\{\begin{array}{l}{\frac{a}{25+b}=40}\\{\frac{a}{400+b}=2.5}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1000}\\{b=0}\end{array}\right.$£¬
£¨2£©¢ÙÓÉ£¨1£©y=$\frac{1000}{{x}^{2}}$£¨5¡Üx¡Ü20£©£¬P£¨t£¬$\frac{1000}{{t}^{2}}$£©£¬
¡ày¡ä=-$\frac{2000}{{t}^{3}}$£¬
¡àÇÐÏßlµÄ·½³ÌΪy-$\frac{1000}{{t}^{2}}$=-$\frac{2000}{{t}^{3}}$£¨x-t£©
ÉèÔÚµãP´¦µÄÇÐÏßl½»x£¬yÖá·Ö±ðÓÚA£¬Bµã£¬ÔòA£¨$\frac{3t}{2}$£¬0£©£¬B£¨0£¬$\frac{3000}{{t}^{2}}$£©£¬
¡àf£¨t£©=$\sqrt{£¨\frac{3t}{2}£©^{2}+£¨\frac{3000}{{t}^{2}}£©^{2}}$=$\frac{3}{2}\sqrt{{t}^{2}+\frac{4¡Á1{0}^{6}}{{t}^{4}}}$£¬t¡Ê[5£¬20]£»
¢ÚÉèg£¨t£©=${t}^{2}+\frac{4¡Á1{0}^{6}}{{t}^{4}}$£¬Ôòg¡ä£¨t£©=2t-$\frac{16¡Á1{0}^{6}}{{t}^{5}}$=0£¬½âµÃt=10$\sqrt{2}$£¬
t¡Ê£¨5£¬10$\sqrt{2}$£©Ê±£¬g¡ä£¨t£©£¼0£¬g£¨t£©ÊǼõº¯Êý£»t¡Ê£¨10$\sqrt{2}$£¬20£©Ê±£¬g¡ä£¨t£©£¾0£¬g£¨t£©ÊÇÔöº¯Êý£¬
´Ó¶øt=10$\sqrt{2}$ʱ£¬º¯Êýg£¨t£©Óм«Ð¡ÖµÒ²ÊÇ×îСֵ£¬
¡àg£¨t£©min=300£¬
¡àf£¨t£©min=15$\sqrt{3}$£¬
´ð£ºt=10$\sqrt{2}$ʱ£¬¹«Â·lµÄ³¤¶È×î¶Ì£¬×î¶Ì³¤¶ÈΪ15$\sqrt{3}$ǧÃ×£®
µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²éµ¼Êý֪ʶµÄ×ÛºÏÔËÓã¬È·¶¨º¯Êý¹Øϵ£¬ÕýÈ·Çóµ¼Êǹؼü£®
A£® | 2 | B£® | 1 | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{8}$ |
A£® | q=r£¼p | B£® | p=r£¼q | C£® | q=r£¾p | D£® | p=r£¾q |
A£® | -1ÊÇf£¨x£©µÄÁãµã | B£® | 1ÊÇf£¨x£©µÄ¼«Öµµã | ||
C£® | 3ÊÇf£¨x£©µÄ¼«Öµ | D£® | µã£¨2£¬8£©ÔÚÇúÏßy=f£¨x£©ÉÏ |