题目内容

【题目】已知圆,一动直线l过与圆相交于.两点,中点,l与直线m:相交于.

(1)求证:当l与m垂直时,l必过圆心

(2)当时,求直线l的方程;

(3)探索是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.

【答案】(1)见解析(2) (3)见解析

【解析】

(1)由圆的方程找出圆心坐标和圆的半径,根据两直线垂直时斜率的乘积为﹣1,由直线m的斜率求出直线l的斜率,根据点A和圆心坐标求出直线AC的斜率,得到直线AC的斜率与直线l的斜率相等,所以得到直线l过圆心;

(2)分两种情况:当直线l与x轴垂直时,求出直线l的方程;当直线l与x轴不垂直时,设直线l的斜率为k,写出直线l的方程,根据勾股定理求出CM的长,然后利用点到直线的距离公式表示出圆心到所设直线l的距离d,让d等于CM,列出关于k的方程,求出方程的解即可得到k的值,写出直线l的方程即可;

(3)根据CMMN,得到等于0,利用平面向量的加法法则化简等于,也分两种情况:当直线l与x轴垂直时,求得N的坐标,分别表示出,求出两向量的数量积,得到其值为常数;当直线l与x轴不垂直时,设出直线l的方程,与直线m的方程联立即可求出N的坐标,分别表示出,求出两向量的数量积,也得到其值为常数.综上,得到与直线l的倾斜角无关.

(1)lm垂直,且,又

所以当lm垂直时,l必过圆心.

(2)①当直线x轴垂直时, 易知符合题意

②当直线x轴不垂直时, 设直线的方程为,即

因为,所以,则由,得

直线. 从而所求的直线的方程为

(3)因为CM⊥MN,

x轴垂直时,易得,则,,

的斜率存在时,设直线的方程为

则由,得 ),

=

综上,与直线l的斜率无关,且.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网