题目内容
14.设矩阵A=$(\begin{array}{l}{1}&{2}\\{2}&{3}\end{array})$①求矩阵A的逆矩阵A-1
②若曲线C在矩阵A-1D的作用下变为曲线C:′x2-y2=1,求曲线C的方程.
分析 ①求出矩阵A=$(\begin{array}{l}{1}&{2}\\{2}&{3}\end{array})$的行列式为$|\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}|$=-1,即可求出矩阵A的逆矩阵A-1
②设曲线C上任一点M(x,y)在矩阵A对应的变换作用后变为曲线C′上一点P(x′,y′),由矩阵变换的特点,即可得到它们的关系式,再代入已知曲线方程即可.
解答 解:①矩阵A=$(\begin{array}{l}{1}&{2}\\{2}&{3}\end{array})$的行列式为$|\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}|$=-1,
所以A-1=$[\begin{array}{l}{-3}&{2}\\{2}&{-1}\end{array}]$;
②设曲线C上任一点P(x,y)在矩阵A-1对应的变换作用后变为曲线C′上一点Q(x′,y′),
则$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{-3}&{2}\\{2}&{-1}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{-3x+2y}\\{2x-y}\end{array}]$,
从而$\left\{\begin{array}{l}{x′=-3x+2y}\\{y′=2x-y}\end{array}\right.$
因为点Q在曲线C′上,所以x′2-y′2=1,即(-3x+2y)2-(2x-y)2=1,
从而5x2-8xy+3y2=1.
所以曲线C的方程为5x2-8xy+3y2=1.
点评 本题考查矩阵的逆矩阵,以及矩阵变换下的曲线方程,属于中档题.
A. | 19 | B. | 20 | C. | 31 | D. | 22 |
A. | 310 | B. | 212 | C. | 180 | D. | 121 |
A. | 30° | B. | 45° | C. | 60° | D. | 120° |
A. | 135 | B. | 172 | C. | 189 | D. | 216 |
A. | 3 | B. | 4 | C. | 5 | D. | 6 |