题目内容

已知a,b,c分别是双曲线的实半轴、虚半轴和半焦距,若方程ax2+bx+c=0无实数根,则此双曲线的离心率e的取值范围是
 
分析:由方程ax2+bx+c=0无实数根可知b2-4ac<0,再根据双曲线的性质推导此双曲线的离心率e的取值范围.
解答:解:由题意可知b2-4ac<0,
∵b2=c2-a2,∴c2-a2-4ac<0,
∴e2-4e-1<0,
解得2-
5
<e<2+
5

∵e>1,∴1<e<2+
5

故双曲线的离心率e的取值范围是 (1,2+
5
).
答案:(1,2+
5
).
点评:本题主要考查双曲线的简单性质,解题时要注意双曲线的离心率大于1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网