题目内容
15.设函数f(x)=2x+$\frac{1}{x}$-1(x<0),则f(x)( )A. | 有最小值$2\sqrt{2}-1$ | B. | 有最小值$-(2\sqrt{2}+1)$ | C. | 有最大值$2\sqrt{2}-1$ | D. | 有最大值$-(2\sqrt{2}+1)$ |
分析 由于x<0,可由2x+$\frac{1}{x}$≤-2$\sqrt{2x•\frac{1}{x}}$=-2$\sqrt{2}$,即可得到最大值.
解答 解:函数f(x)=2x+$\frac{1}{x}$-1(x<0)
≤-2$\sqrt{2x•\frac{1}{x}}$-1=-(2$\sqrt{2}$+1),
当且仅当2x=$\frac{1}{x}$,即x=-$\frac{\sqrt{2}}{2}$时,
f(x)取得最大值-(2$\sqrt{2}$+1).
故选D.
点评 本题考查函数的最值的求法,注意运用基本不等式,同时注意满足的条件:一正二定三等,属于基础题和易错题.
练习册系列答案
相关题目
5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
3.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)
(Ⅰ) 能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ) 经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式附表及公式
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
几何题 | 代数题 | 总计 | |
男同学 | 22 | 8 | 30 |
女同学 | 8 | 12 | 20 |
总计 | 30 | 20 | 50 |
(Ⅱ) 经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式附表及公式
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
7.过平面外一点作平面的垂线可以作( )
A. | 1条 | B. | 2条 | C. | 3条 | D. | 无数条 |
5.不等式(x+1)(1-x)>0的解集为( )
A. | {x|x<-1或x>1} | B. | {x|-1<x<1} | C. | {x|x>1} | D. | {x|x<-1} |