题目内容

在数列{an},a1=1,an+1=can+cn+1(2n+1)(nN*),其中实数c0.{an}的通项公式.

 

an=(n2-1)cn+cn-1,nN*

【解析】由原式得=+(2n+1).bn=,

b1=,bn+1=bn+(2n+1),

因此对n2bn=(bn-bn-1)+(bn-1-bn-2)++(b2-b1)+b1=(2n-1)+(2n-3)++3+=n2-1+,

因此an=(n2-1)cn+cn-1,n2.

又当n=1时上式成立.

因此an=(n2-1)cn+cn-1,nN*.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网