题目内容
【题目】已知函数,.
(1)讨论函数的单调性;
(2)已知在处的切线与轴垂直,若方程有三个实数解、、(),求证:.
【答案】(1)①当时, 在单调递增,②当时,单调递增区间为,,单调递减区间为
(2)证明见解析
【解析】
(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;
(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.
(1),
①当时,恒成立,则在单调递增
②当时,令得,
解得,
又,∴
∴当时,,单调递增;
当时,,单调递减;
当时,,单调递增.
(2)依题意得,,则
由(1)得,在单调递增,在上单调递减,在上单调递增
∴若方程有三个实数解,
则
法一:双偏移法
设,则
∴在上单调递增,∴,
∴,即
∵,∴,其中,
∵在上单调递减,∴,即
设,
∴在上单调递增,∴,
∴,即
∵,∴,其中,
∵在上单调递增,∴,即
∴.
法二:直接证明法
∵,,在上单调递增,
∴要证,即证
设,则
∴在上单调递减,在上单调递增
∴,
∴,即
(注意:若没有证明,扣3分)
关于的证明:
(1)且时,(需要证明),其中
∴
∴
∴
(2)∵,∴
∴,即
∵,,∴,则
∴
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相关指数)