题目内容
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周长的最大值.
(1)∵b2+c2=a2+bc,∴a2=b2+c2-bc,
结合余弦定理知cosA=
=
=
,
又A∈(0,π),∴A=
,
∴2sinBcosC-sin(B-C)=sinBcosC+cosBsinC
=sin(B+C)=sin[π-A]=sinA=
;
(2)由a=2,结合正弦定理得:
=
=
=
=
,
∴b=
sinB,c=
sinC,
则a+b+c=2+
sinB+
sinC
=2+
sinB+
sin(
-B)
=2+2
sinB+2cosB=2+4sin(B+
),
可知周长的最大值为6.
结合余弦定理知cosA=
b2+c2-a2 |
2bc |
b2+c2-(b2+c2-bc) |
2bc |
1 |
2 |
又A∈(0,π),∴A=
π |
3 |
∴2sinBcosC-sin(B-C)=sinBcosC+cosBsinC
=sin(B+C)=sin[π-A]=sinA=
| ||
2 |
(2)由a=2,结合正弦定理得:
a |
sinA |
b |
sinB |
c |
sinC |
2 | ||||
|
4
| ||
3 |
∴b=
4
| ||
3 |
4
| ||
3 |
则a+b+c=2+
4
| ||
3 |
4
| ||
3 |
=2+
4
| ||
3 |
4
| ||
3 |
2π |
3 |
=2+2
3 |
π |
6 |
可知周长的最大值为6.
练习册系列答案
相关题目