题目内容
3.已知区域M:$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\end{array}\right.$,定点A(3,1),在M内任取一点P,使得PA≥$\sqrt{2}$的概率为( )A. | $\frac{5}{2}-\frac{π}{8}$ | B. | $\frac{5}{4}$-$\frac{π}{8}$ | C. | $\frac{5}{2}-\frac{π}{4}$ | D. | $\frac{5}{4}$ |
分析 由题意,画出区域M,和满足PA≥$\sqrt{2}$的部分,利用几何概型公式解答.
解答 解:如图区域M是边长为2的正方形,在M内任取一点P,使得PA≥$\sqrt{2}$的区域是图中阴影部分,面积为4-($\frac{1}{4}π×2-\frac{1}{2}×\sqrt{2}×\sqrt{2}$)=5-$\frac{π}{2}$,
由几何概型公式可得在M内任取一点P,使得PA≥$\sqrt{2}$的概率为$\frac{5-\frac{π}{2}}{4}=\frac{5}{4}-\frac{π}{8}$;
故选B.
点评 本题考查了几何概型公式的运用,关键是求出使得PA≥$\sqrt{2}$的部分面积,利用几何概型公式求之.
练习册系列答案
相关题目
8.函数f(x)=sin(x+$\frac{π}{2}$)图象的一个对称中心为( )
A. | ($\frac{π}{2}$,0) | B. | (0,1) | C. | (0,0) | D. | (-$\frac{π}{4}$,0) |
13.为了应对金融危机,一公司决定从某办公室10名工作人员中裁去4人,要求A、B二人不能全部裁掉,则不同的裁员方案的种数为( )
A. | 70 | B. | 126 | C. | 182 | D. | 210 |