题目内容
【题目】已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1 , x2(x1<x2)( )
A.
B.
C.
D.
【答案】D
【解析】解:∵f′(x)=lnx+1﹣2ax,(x>0)
令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1 , x2函数g(x)=lnx+1﹣2ax有且只有两个零点g′(x)在(0,+∞)上的唯一的极值不等于0.
.
①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.
②当a>0时,令g′(x)=0,解得x= ,
∵x ,g′(x)>0,函数g(x)单调递增; 时,g′(x)<0,函数g(x)单调递减.
∴x= 是函数g(x)的极大值点,则 >0,即 >0,
∴ln(2a)<0,∴0<2a<1,即 .
故当0<a< 时,g(x)=0有两个根x1 , x2 , 且x1< <x2 , 又g(1)=1﹣2a>0,
∴x1<1< <x2 , 从而可知函数f(x)在区间(0,x1)上递减,在区间(x1 , x2)上递增,在区间(x2 , +∞)上递减.
∴f(x1)<f(1)=﹣a<0,f(x2)>f(1)=﹣a>﹣ .
故选:D.
【考点精析】本题主要考查了函数的极值和函数的极值与导数的相关知识点,需要掌握极值反映的是函数在某一点附近的大小情况;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.
【题目】为了调查喜爱运动是否和性别有关,我们随机抽取了50名对象进行了问卷调查得到了如下的2×2列联表:
喜爱运动 | 不喜爱运动 | 合计 | |
男性 | 5 | ||
女性 | 10 | ||
合计 | 50 |
若在全部50人中随机抽取2人,抽到喜爱运动和不喜爱运动的男性各一人的概率为 .
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=
(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜爱运动与性别有关?说明你的理由..