题目内容
【题目】如图,在四棱锥中,底面是边长为2的正方形,,为中点,点在上且平面,在延长线上,,交于,且
(1)证明:平面;
(2)设点在线段上,若二面角为,求的长度.
【答案】(1)详见解析;(2).
【解析】
(1) 要证平面,只需证明平行于平面内一条直线即可,取的中点,连结,,可证四边形为平行四边形,从而可得,根据线面平行的判定定理即可证出;
(2) 取的中点,连结,可证平面,以为原点,为轴,为轴建系,设,求出平面的法向量及平面的法向量,根据二面角为,利用夹角公式列出方程即可求出,进而可求出的长度.
(1)证明:取的中点,连结,,则,且,
因为,交于,且,
又因为,所以,,
所以四边形为平行四边形,
所以,又平面,平面,
所以平面.
(2)由平面,平面,
所以,又,和在平面内显然相交,
所以平面,又平面,
所以平面平面,
取的中点,连结,因为,所以,
又平面平面,平面,所以平面,
在等腰中,,
以为原点,建立如图所示的空间直角坐标系,
则,,,,
因为为的中点,所以,
设,设平面的一个法向量,
,,
由,得,令,得,,
所以,
设平面的一个法向量,
所以,
因为二面角为,所以,
即,解得,
所以.
【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:
产量(单位:斤) 播种方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
约定亩产超过900斤(含900斤)为“产量高”,否则为“产量低”
(1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)
(2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为“产量高”与“播种方式”有关?
产量高 | 产量低 | 合计 | |
直播 | |||
散播 | |||
合计 |
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |