ÌâÄ¿ÄÚÈÝ
16£®ÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãΪF1£¬F2£¬ÓÐÏÂÁÐÑо¿ÎÊÌâ¼°½áÂÛ£º¢ÙÇúÏß$\frac{x^2}{25-k}+\frac{y^2}{9-k}={1_{\;}}£¨k£¼9£©$ÓëÍÖÔ²CµÄ½¹µãÏàͬ£»
¢ÚË«ÇúÏߵĽ¹µãÊÇÍÖÔ²C µÄ³¤ÖáµÄ¶Ëµã£¬¶¥µãÊÇÍÖÔ²CµÄ½¹µã£¬ÔòÆä±ê×¼·½³ÌΪ$\frac{x^2}{16}-\frac{y^2}{9}=1$£»
¢ÛÈôµãPΪÍÖÔ²ÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬Ôò$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=8£®
¢Ü¹ýÍÖÔ²CµÄÓÒ½¹µãF2ÇÒбÂÊΪk£¨k£¾0£©µÄÖ±ÏßÓëCÏཻÓÚA¡¢BÁ½µã£®Èô$\overrightarrow{AF}=3\overrightarrow{FB}$£¬Ôòk=$\frac{5}{6}$£®
ÔòÒÔÉÏÑо¿½áÂÛÕýÈ·µÄÐòºÅÊÇ¢Ù¢Ú¢Û£®
·ÖÎö ÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãΪF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬³¤Öá¶Ëµã£º£¨¡À5£¬0£©£¬¶ÌÖá¶Ëµã£º£¨0£¬¡À3£©£®
¢ÙÓÉ$\sqrt{25-k-£¨9-k£©}$=4£¬¿ÉµÃ´ËÍÖÔ²ÓëÍÖÔ²CµÄ½¹µãÏàͬ£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚË«ÇúÏߵĽ¹µãÊÇÍÖÔ²C µÄ³¤ÖáµÄ¶Ëµã£¬¶¥µãÊÇÍÖÔ²CµÄ½¹µã£¬¼´¿ÉµÃ³öÆä±ê×¼·½³Ì£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÓÉ$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬ÉèPOµÄÑÓ³¤ÏßÓëÍÖÔ²ÏཻÓÚµãQ£¬ÔòËıßÐÎPF1QF2ÊǾØÐΣ¬Òò´Ë$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=|F1F2|=8£¬¼´¿ÉÅжϳöÕýÎó£®
¢ÜÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³Ì£ºmy=x-4£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨9m2+25£©y2+72my-81=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¼°Æä$\overrightarrow{AF}=3\overrightarrow{FB}$£¬-y1=3y2£¬»¯¼ò½â³öm£¬¼´¿ÉµÃ³ök£®
½â´ð ½â£ºÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãΪF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬³¤Öá¶Ëµã£º£¨¡À5£¬0£©£¬¶ÌÖá¶Ëµã£º£¨0£¬¡À3£©£®
¢ÙÇúÏß$\frac{x^2}{25-k}+\frac{y^2}{9-k}={1_{\;}}£¨k£¼9£©$£¬ÓÉ$\sqrt{25-k-£¨9-k£©}$=4£¬¿ÉµÃ´ËÍÖÔ²ÓëÍÖÔ²CµÄ½¹µãÏàͬ£¬ÕýÈ·£»
¢ÚË«ÇúÏߵĽ¹µãÊÇÍÖÔ²C µÄ³¤ÖáµÄ¶Ëµã£¬¶¥µãÊÇÍÖÔ²CµÄ½¹µã£¬ÔòÆä±ê×¼·½³ÌΪ$\frac{x^2}{16}-\frac{y^2}{9}=1$£¬ÕýÈ·£»
¢ÛÈôµãPΪÍÖÔ²ÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬ÉèPOµÄÑÓ³¤ÏßÓëÍÖÔ²ÏཻÓÚµãQ£¬ÔòËıßÐÎPF1QF2ÊǾØÐΣ¬Òò´Ë$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=|F1F2|=8£¬ÕýÈ·£®
¢ÜÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³Ì£ºmy=x-4£¬ÁªÁ¢$\left\{\begin{array}{l}{my=x-4}\\{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1}\end{array}\right.$£¬»¯Îª£¨9m2+25£©y2+72my-81=0£¬¡ày1+y2=-$\frac{72m}{9{m}^{2}+25}$£¬y1y2=$\frac{-81}{9{m}^{2}+25}$£®£¨*£©
¡ß$\overrightarrow{AF}=3\overrightarrow{FB}$£¬¡à-y1=3y2£¬´úÈ루*£©¿ÉµÃ£º39m2=25£¬m£¾0£¬½âµÃm=$\frac{5}{\sqrt{39}}$£¬Ôòk=$\frac{\sqrt{39}}{5}$£®Òò´Ë²»ÕýÈ·£®
ÔòÒÔÉÏÑо¿½áÂÛÕýÈ·µÄÐòºÅÊÇ¢Ù¢Ú¢Û£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û£®
µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢¼òÒ×Âß¼µÄÅж¨·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $log_4^{0.3}£¼{0.4^3}£¼{3^{0.4}}$ | B£® | ${0.4^3}£¼log_4^{0.3}£¼{3^{0.4}}$ | ||
C£® | $log_4^{0.3}£¼{3^{0.4}}£¼{0.4^3}$ | D£® | ${0.4^3}£¼{3^{0.4}}£¼log_4^{0.3}$ |
A£® | BD¡ÍCE | |
B£® | ¡÷CEFµÄÃæ»ýΪ¶¨Öµ | |
C£® | ËÄÃæÌåBCEFµÄÌå»ýËæEFµÄλÖõı仯¶ø±ä»¯ | |
D£® | Ö±ÏßBEÓëCFΪÒìÃæÖ±Ïß |