题目内容
【题目】一工厂计划生产某种当地政府控制产量的特殊产品,月固定成本为1万元,设此工厂一个月内生产该特殊产品万件并全部销售完.根据当地政府要求产量满足,每生产件需要再投入万元,每1万件的销售收入为(万元),且每生产1万件产品政府给予补助(万元).(注:月利润=月销售收入+月政府补助-月总成本).
(1)写出月利润(万元)关于月产量(万件)的函数解析式;
(2)求该工厂在生产这种特殊产品中所获得的月利润最大值(万元)及此时的月生产量(万件)
【答案】(1) (2)月利润最大值为万元,此时的月生产量为2万件
【解析】
(1)根据题意利用月利润=月销售收入+月政府补助-月总成本进行求解即可;
(2)对函数求导,求出函数的单调区间,最后能求出函数的最大值.
解:(1)设该工厂一个月内生产该特殊产品万件,依题意,
,
所以利润(万元)关于月产量(万件)的函数解析式:
.
(2)
,
所以当时,,函数在区间上单调递增;
当时,,函数在区间上单调递减.
所以上当时,函数在区间取得最大值,.
该工厂在生产这种特殊产品中所获得的月利润最大值为万元,此时的月生产量为2万件.
【题目】为了坚决打赢新冠状病毒的攻坚战,阻击战,某小区对小区内的名居民进行模排,各年龄段男、女生人数如下表.已知在小区的居民中随机抽取名,抽到岁~岁女居民的概率是.现用分层抽样的方法在全小区抽取名居民,则应在岁以上抽取的女居民人数为( )
岁—岁 | 岁—岁 | 岁以上 | |
女生 | |||
男生 |
A.B.C.D.
【题目】随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢,创新已经成为烘焙作品的衡量标准.某“网红”甜品店生产有几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:
甜品种类 | A甜品 | B甜品 | C甜品 | D甜品 | E甜品 |
销售总额(万元) | 10 | 5 | 20 | 20 | 12 |
销售额(千份) | 5 | 2 | 10 | 5 | 8 |
利润率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 |
(利润率是指:一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值.)
(1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;
(2)从该甜品店的五种“网红甜品”中随机选取2种不同的甜品,求这两种甜品的单价相同的概率;
(3)假设每类甜品利润率不变,销售一份A甜品获利元,销售一份B甜品获利元,…,销售一份E甜品获利元,依据上表统计数据,随机销售一份甜品获利的期望为,设,试判断与的大小.
【题目】某大城市一家餐饮企业为了了解外卖情况,统计了某个送外卖小哥某天从9:00到21:00这个时间段送的50单外卖.以2小时为一时间段将时间分成六段,各时间段内外卖小哥平均每单的收入情况如下表,各时间段内送外卖的单数的频率分布直方图如下图.
时间区间 | ||||||
每单收入(元) | 6 | 5.5 | 6 | 6.4 | 5.5 | 6.5 |
(Ⅰ)求频率分布直方图中的值,并求这个外卖小哥送这50单获得的收入;
(Ⅱ)在这个外卖小哥送出的50单外卖中男性订了25单,且男性订的外卖中有20单带饮品,女性订的外卖中有10单带饮品,请完成下面的列联表,并回答是否有的把握认为“带饮品和男女性别有关”?
带饮品 | 不带饮品 | 总计 | |
男 | |||
女 | |||
总计 |
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |