题目内容

精英家教网已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
)

(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.
分析:(1)由“左焦点为F(-
3
,0)
,右顶点为D(2,0)”得到椭圆的半长轴a,半焦距c,再求得半短轴b最后由椭圆的焦点在x轴上求得方程.
(2)设线段PA的中点为M(x,y),点P的坐标是(x0,y0),由中点坐标公式,分别求得x0,y0,代入椭圆方程,可求得线段PA中点M的轨迹方程.
(3)分直线BC垂直于x轴时和直线BC不垂直于x轴两种情况分析,求得弦长|BC|,原点到直线的距离建立三角形面积模型,再用基本不等式求其最值.
解答:解:(1)由已知得椭圆的半长轴a=2,半焦距c=
3
,则半短轴b=1.
又椭圆的焦点在x轴上,
∴椭圆的标准方程为
x2
4
+y2=1

(2)设线段PA的中点为M(x,y),点P的坐标是(x0,y0),
x=
x0+1
2
y=
y0+
1
2
2
x0=2x-1
y0=2y-
1
2

由,点P在椭圆上,得
(2x-1)2
4
+(2y-
1
2
)2=1

∴线段PA中点M的轨迹方程是(x-
1
2
)2+4(y-
1
4
)2=1

(3)当直线BC垂直于x轴时,BC=2,
因此△ABC的面积S△ABC=1.
当直线BC不垂直于x轴时,说该直线方程为y=kx,代入
x2
4
+y2=1

解得B(
2
4k2+1
2k
4k2+1
),C(-
2
4k2+1
,-
2k
4k2+1
),
|BC|=4
1+k2
1+4k2
,又点A到直线BC的距离d=
|k-
1
2
|
1+k2

∴△ABC的面积S△ABC=
1
2
|BC|•d=
|2k-1|
1+4k2

于是S△ABC=
4k2-4k+1
4k2+1
=
1-
4k
4k2+1

4k
4k2+1
≥-1,得S△ABC
2
,其中,当k=-
1
2
时,等号成立.
∴S△ABC的最大值是
2
点评:本题主要考查椭圆的几何性质,直线与椭圆的位置关系,还考查了三角形面积模型的建立和解模型的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网