题目内容
【题目】某品牌服装店为了庆祝开业两周年,特举办“你敢买,我就送”的回馈活动,规定店庆当日进店购买指定服装的消费者可参加游戏,赢取奖金,游戏分为以下两种:
游戏 1:参加该游戏赢取奖金的成功率为,成功后可获得
元奖金;
游戏 2:参加该游戏赢取奖金的成功率为,成功后可得
元奖金;
无论参与哪种游戏,未成功均没有收获,每人有且仅有一次机会,且每次游戏成功与否均互不影响,游戏结束后可到收银台领取奖金。
(Ⅰ)已知甲参加游戏 1,乙参加游戏 2,记甲与乙获得的总奖金为,若
,求
的值;
(Ⅱ)若甲、乙、丙三人都选择游戏 1或都选择游戏 2,问:他们选择何种规则,累计得到奖金的数学期望值最大?
【答案】(Ⅰ)0.6(Ⅱ)见解析
【解析】
(Ⅰ)根据甲、乙参加游戏会有4种结果,列出方程求出p的值,再计算P(ξ≤200)的值;(Ⅱ)分别计算甲、乙、丙都选游戏1和都选游戏2时,累计得到的奖金,再比较它们的大小即可.
(Ⅰ)甲、乙参加游戏,会有4种结果;
P | 0.4(1﹣p) | 0.6(1﹣p) | 0.4p | 0.6p |
ξ | 0 | 200 | 300 | 500 |
则P(ξ>300)=P(ξ=500)=0.6p=0.24,解得p=0.4;
所以P(ξ≤200)=P(ξ=0)+P(ξ=200)=0.4×(1﹣0.4)+0.6×(1﹣0.4)=0.6;
(Ⅱ)都选游戏1时,设赢的人数为X,则X~B(3,0.6),
E(X)=np=3×0.6=1.8;
累计赢取的奖金为J(X)=1.8×200=360(元);
都选游戏2时,设赢的人数为Y,则Y~B(3,0.4),
E(Y)=np=3×0.4=1.2;
累计得到的奖金为J(Y)=1.2×300=360(元);
甲、乙、丙三人都选择游戏1或都选择游戏2,累计得到奖金的数学期望值一样多.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目