题目内容
【题目】在倡导低碳、节能减排政策的推动下,越来越多的消费者选择购买新能源汽车.某品牌新能源汽车的行驶里程x(万公里)与该里程内维修保养的总费用y(千元)的统计数据如下:
1 | 2 | 3 | 4 | 5 | 6 | |
0.8 | 1.8 | 3.3 | 4.5 | 4.7 | 6.8 |
(1)根据表中数据建立y关于x的回归方程为.我们认为,若残差绝对值,则该数据为可疑数据,请找出上表中的可疑数据;
(2)经过确认,数据采集有误,(1)中可疑数据的维修保养总费用应增加0.7千元.请重新利用线性回归模型拟合数据.(精确到0.01)
附:,.,,,.
【答案】(1)为可疑数据(2)重新建立的线性回归方程为
【解析】
(1)根据题意,逐一代入数据计算残差绝对值,再通过比较找出可疑数据;
(2)先求均值,再代入公式求,即得结果.
解:(1),
为可疑数据,
(2)由题意知,重新调查后的数据为
设重新建立的回归方程为,
,
∴重新建立的线性回归方程为
(未用参考数据,直接利用表中数据计算同样给分.)
练习册系列答案
相关题目
【题目】某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | 0.05 | |
第2组 | a | 0.35 | |
第3组 | 30 | b | |
第4组 | 20 | 0.20 | |
第5组 | 10 | 0.10 | |
合计 | n | 1.00 |
(1)求出频率分布表中的值,并完成下列频率分布直方图;
(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.