题目内容
9.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为( )A. | [0,$\frac{12}{5}$] | B. | (0,$\frac{12}{5}$) | C. | (1,3) | D. | [1,3] |
分析 设出圆心C的坐标,表示出圆的方程,进而根据|MA|=2|MO|,设出M,利用等式关系整理求得M的轨迹方程,进而判断出点M应该既在圆C上又在圆D上,且圆C和圆D有交点.进而确定不等式关系求得a的范围.
解答 解:因为圆C的圆心在直线y=2x-4上,所以设圆心C为(a,2a-4),
则圆C的方程为:(x-a)2+[y-(2a-4)]2=1.
又|MA|=2|MO|,设M为(x,y),则可得:x2+(y+1)2=4,
设该方程对应的圆为D,
所以点M应该既在圆C上又在圆D上,且圆C和圆D有交点.
则|2-1|≤$\sqrt{{a}^{2}+[(2a-4)-(-1)]^{2}}$≤|2+1|.
由5a2-12a+8≥0,得a∈R.
由5a2-12a≤0得0≤a≤$\frac{12}{5}$.
所以圆心C的横坐标的取值范围为[0,$\frac{12}{5}$].
故选:A.
点评 本题主要考查了直线与圆的方程的应用.考查了学生的分析推理和基本的运算能力.
练习册系列答案
相关题目
17.过椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的右焦点F作两条相互垂直的直线分别交椭圆于A,B,C,D四点,则$\frac{1}{|AB|}+\frac{1}{|CD|}$的值为( )
A. | $\frac{1}{8}$ | B. | $\frac{1}{6}$ | C. | 1 | D. | $\frac{7}{12}$ |
1.函数h(x)=2sin(2x+$\frac{π}{6}$),函数f(x)=2cos(2x-$\frac{2π}{3}$)可由h(x)经过( )的变换得到.
A. | 向右平移$\frac{π}{6}$个单位 | B. | 向左平移$\frac{π}{6}$个单位 | ||
C. | 向右平移$\frac{π}{3}$个单位 | D. | 向左平移$\frac{π}{3}$个单位 |