题目内容

精英家教网如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为
 
分析:折成的四面体是正四面体,画出立体图形,根据中点找平行线,把所求的异面直线角转化为一个三角形的内角来计算.
解答:精英家教网解:如图,连接HE,取HE的中点K,连接GK,则GK∥DH,故∠PGK即为所求的异面直线角或者其补角.
设这个正四面体的棱长为2,在△PGK中,PG=
3
,GK=
3
2
PK=
12+(
3
2
)
2
=
7
2

cos∠PGK=
(
3
)
2
+(
3
2
)
2
-(
7
2
)
2
3
×
3
2
=
2
3

即异面直线PG与DH所成的角的余弦值是
2
3

故答案为:
2
3
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网